Construction of a global solution for the one dimensional singularly-perturbed boundary value problem

Main Article Content

Samir Karasuljic, Dr Enes Duvnjakovic, Dr Vedad Pasic, Dr http://orcid.org/0000-0003-2115-0422 Elvis Barakovic, Dr http://orcid.org/0000-0002-3358-1599

Abstract

We consider an approximate solution for the one--dimensional semilinear singularly--perturbed boundary value problem, using the previously obtained numerical values of the boundary value problem in the mesh points and the representation of the exact solution using Green's function. We present an \(\varepsilon\)--uniform convergence of such gained the approximate solutions, in the maximum norm of the order \(\mathcal{O}\left(N^{-1}\right)\) on the observed domain. After that, the constructed approximate solution is repaired and we obtain a solution, which also has \(\varepsilon\)--uniform convergence, but now of order \(\mathcal{O}\left(\ln^2N/N^2\right)\) on \([0,1]\). In the end a numerical experiment is presented to confirm previously shown theoretical results.

Article Details

How to Cite
KARASULJIC, Samir et al. Construction of a global solution for the one dimensional singularly-perturbed boundary value problem. Journal of Modern Methods in Numerical Mathematics, [S.l.], v. 8, n. 1-2, p. 52-65, july 2017. ISSN 2090-4770. Available at: <http://m-sciences.com/index.php?journal=jmmnm&page=article&op=view&path%5B%5D=1275>. Date accessed: 20 aug. 2017. doi: https://doi.org/10.20454/jmmnm.2017.1275.
Section
ART