Irresolute \(\beta\)-topological Algebra
Main Article Content
Abstract
In this paper, we introduce a generalization of topological \(R\)-module using \(\beta\)-open sets called irresolute \(\beta\)-topological algebra (group, ring, and module). We show that the center of an irresolute \(\beta\)-hausdorff ring is \(\beta\)-closed and if \(N\) is \(Q\)-submodule of an irresolute \(\beta\)-topological \(R\)-module \(M\), then \(\beta Cl(N)_M\) is also \(\beta Cl(Q)_R\)-submodule where \(Q,N\) are subsets of \(R,M\) respectively. Several other properties of them are investigated.
Metrics
Metrics Loading ...
Article Details
How to Cite
Mohammed Salih, H., Akray, I. ., & Mena, F. A. . (2023). Irresolute \(\beta\)-topological Algebra. Journal of Advanced Studies in Topology, 13(1-2), 1–6. https://doi.org/10.5281/zenodo.7497566
Issue
Section
Research Articles

This work is licensed under a Creative Commons Attribution 4.0 International License.